
EMSolve D. White 1

Implicit Finite Element Technology for
Transient Simulation in Electromagnetics

Daniel White
3rd Biennial Tri-Laboratory Engineering Conference on

Modeling and Simulation
Nov 2-3, 1999

This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.

UCRL-VG-136070

EMSolve D. White 2

Implicit Finite Element Technology for
Transient Simulation in Electromagnetics

• Goals of the EMSolve project
– research the application of vector finite element methods for full-wave

computational electromagnetics (CEM)
– develop a prototype framework for general-purpose CEM
– solve some interesting application problems in electrostatics,

micromagnetics, optics, accelerators, magnetohydrodynamics, etc.
• This presentation

– Vector finite elements
– Various formulations of Maxwell's equations
– Overview of the EMSolve software architecture
– Results

EMSolve D. White 3

Different physical quantities require different
discrete representations

0-FORM 1-FORM 2-FORM 3-FORM

Integral Point Line Surface Volume
Derivative Gradient Curl Divergence None
Continuity Total Tangential Normal None
Hilbert space H(grad) H(curl) H(div) L2
E&M Potential Fields Fluxes Density
Finite element N(nodal) W(edge) F(face) S(volume)

• Scalars can be classified as continuous or discontinuous
• Vectors can be classified as having tangential or normal continuity
• Therefore we have four basic types of physical quantities, and we

require four different discrete representations

EMSolve D. White 4

Vector finite element basis functions are used
to discretize vector fields

• Electric field is expanded in terms
of the “edge” basis functions W

– E is uniquely determined in each
cell by the 12 voltages ei

• Magnetic flux density is
expanded in terms of the “face”
basis functions F

– B is uniquely determined in each
cell by the 6 fluxes bi

W t dli j ij•z =� δ

Fi j ijn da•z =� δ

edge element

face element

ei iE t dlZ ’z �E e Wi iZp where

bi iB ndaZ ’z �B b Fi iZp where

EMSolve D. White 5

Vector finite elements can be defined on the
standard “zoo” elements

• Typically, basis functions are first
defined on a reference element and
then transformed accordingly

• Covariant transformation preserves
line integrals, appropriate for
“edge” basis functions

• Contravariant transformation
preserves surface integrals,
appropriate for “face” basis
functions

~W J W= −1 �

~F J FT=
�

covariant

contravariant

EMSolve D. White 6

Linear edge functions defined on tetrahedron

• Six basis functions, one for each edge

EMSolve D. White 7

Linear face functions defined on a tetrahedron

• Four basis functions, one for each face

EMSolve D. White 8

We can think of differential operators as maps
between function spaces

• The operators , , and
are the standard operators

• For example,

• The operators , and
are the weak differential operators
(also called adjoint operators)

• For example,

L2H(div)H(curl)H(grad)

H(grad)

H(curl)

H(div)

L2 Ô’

Ô“

Ô

~
Ô’

~
Ô“

~
Ô

Ô Ô“ Ô’

if H grad then H curl E =Ñ ÑÍ Ô Í() ()

~
Ô

~
Ô“

~
Ô’

if E H curl we define Í ()

q E H grad, , ()Ñ Ñ ÑZ Ô ? Í

 ~Ô’ ZE q

domain

ra
ng

e

where

EMSolve D. White 9

Discrete differential operators are simply
sparse matrices

• Matrices depend upon the mesh and the order of the basis functions
• Matrices can easily be combined to form compound discrete operators
• Ideal abstraction for parallel CEM

node

node

edge

edge

face

face

cell

cell

A K DJ1 T

D Q MJ1 T

N P AJ1 T

P

K

Q

domain

ra
ng

e

EMSolve D. White 10

These discrete differential operators have
some very nice properties

• Self-adjoint PDE’s map to symmetric positive definite matrices
– required for numerical stability of many time integration methods
– makes solution of linear systems easier

• Vector identities strictly satisfied

– required for strict conservation of physical properties
• For Cartesian meshes, these discrete operators reduce to well known

finite-difference formula
– no need to maintain a separate FD code
– peace-of-mind

Ô“Ô ZÑ 0 Ô’Ô“ ZE 0

EMSolve D. White 11

Examples

• Laplace’s equation (φ=approximated as 0-form)
 continuous discrete

• Laplace’s equation (φ=approximated as 3-form)
 continuous discrete

Ô’ Ô ZÉ Ñ ê P AP NT Ñ êZ

Ô’ Ô ZÉ Ñ ê QD Q MJ

Z
1 T Ñ ê

{s.p.d

{s.p.d

EMSolve D. White 12

Examples (cont.)

• Vector identity
= φ approximated as 0-form:

= φ approximated as 3-form:

• Vector identity
 E approximated as 1-form:

 E approximated as 2-form:

Ô“Ô ZÑ 0
KPÑ ÑZ ?0

A K Q M1 T TJ

Z ?Ñ Ñ0

Ô’Ô“ ZE 0
QKe eZ ?0

N P K D1 T TJ

Z ?e e0

EMSolve D. White 13

Examples (cont.)

• Vector Helmholtz equation
 continuous discrete

• Time dependent Maxwell’s equations
 continuous discrete

�

�

b e b m
e b e jT
ZJ J J

Z J J

K G
A K D R

Ô“ Ô“ J Z
J

ã Éï
1 2 0E E K DK AT eJ Z

F

H
GG

I

K
JJï

2 0

�

�

B E B M
E B E J

B

E

ZJÔ“ J J

ZÔ“ J JJ

ë

É ã ë
1

EMSolve D. White 14

Example time integration methods

• Explicit leapfrog
– “Mass lumping”, recommended on Cartesian regions only.
– Equivalent to classic FDTD method.

• Semi-Implicit leapfrog
– Solve self-consist “mass” matrix at every time step. Stability independent

of conductivity, improved dispersion characteristics

b b t e b m
e e t b e j

n n n n n

n n n n nT

H J J

H H

Z J H H

Z H J J

1 2 1 2 1 2

1 1 2

/ / /

/
()

()
a

a

K G
K R

() ()
() ()

/ /

/

D G DK D G D
A R K A R AD
H ZJ H J J

H Z H J J

H J

H H H

a a

a a

a

a

t t

t t
b t e b m
e t b e j

n n n n

n n nT n
2 2

2 2

1 2 1 2

1 1 2 1

EMSolve D. White 15

Example time integration methods (cont.)

• Explicit wave equation

• Semi-Implicit wave equation

• Newmark-Theta variably implicit wave equation

() () ()A R A R I K ADKH Z J J H
H J

Ha a at te e t e Jn n n nT

2 2
1 1 22

e e t e jn n n nTH J

Z J HH
1 1 22()I K DKa

() ()
(())

A R K A R
I K A

DK
DK

H H Z J

J J H

H J

Ha aa

a

t tt e e
t e j

T

T

n n

n n
2 2

2 1 1

22 1
è

è

EMSolve D. White 16

Some notes on “mass” matrices

• Always symmetric positive definite
• On Cartesian grid, Cholesky decomposition of A has the exact same

sparsity structure as A. We can actually put A-1 on r.h.s.
– D. White, “Solution of Capacitance Systems using Incomplete Cholesky

Fixed Point Iteration,” Communications in Numerical Methods in
Engineering.

• If an unstructured grid is refined properly, the condition number of A
is constant. Hence even simple iterative methods are scalable.

– G. Rodrigue, D. White, J. Koning,”Scalable Preconditioned Conjugate
Gradient Inversion of Vector Finite Element Mass Matrices,” Journal of
Computational and Applied Mathematics.

EMSolve D. White 17

It’s time to solve the equations...

• We have converted PDE’s to algebraic equations.
• Fortunately many good solver packages exist, even for massively

parallel computers.

Commercial/public
mesh generation

Commercial/public
visualization

Object-oriented finite
element engine

solvers
Metis
PETSc
Hypre
ARPACK
etc.

C++ wrapper

Python wrapper or C++ main

EMSolve D. White 18

EMSolve currently uses PETSc for all parallel
number crunching

• A simple C++ wrapper is employed to make PETSc easier to use, to
provide additional error checking, and to enhance extensibility.

• Vector operations
– y = y + a*x, y = z + a*x, y = a*x + b*y, a = xT y, a = |x|, etc.

• Matrix-vector operations
– Y = Y + a X, y = A*x, z = y + A*x, a = |A|, z = diag(A), etc.

• Linear solvers
– 10 Krylov methods, 8 preconditioners (and it is easy to add more…)

• Orderings, partitionings, gather and scatter operations.

EMSolve D. White 19

Example C++ main

• This is the main time stepping loop for semi-implicit leapfrog
integration of Maxwell’s equations

 for (int i = 0;i < nstep;i++) {

// magnetic field update
sm.set_all(0.0); // initialize source vector to zero
rhs1 = D * sm; // add current contribution to rhs
rhs1 = rhs1 + Q1 * b; // add Q1 b to rhs, b is the latest magnetic field
sm = K * e; // re-use sm as a temporary intermediate variable
rhs1 = rhs1 + D * sm; // D K e is the curl operator, add to rhs
lsQ.solve(rhs1,b); // solve for the new b

// electric field update
se.set_all(0.0); // initialize source vector to zero
electricCurrent.set_time(i*dt,i); // set present simulation time
electricCurrent.source(se);
rhs2 = A * se; // add current contribution to rhs
rhs2 = rhs2 + R1 * e; // add R1 e to rhs, e is the latest electric field
sm = D * b; // re-use sm as a temporary intermediate variable
rhs2 = rhs2 + KT * sm; // KT D b is the curl operator, add to rhs
lsR.solve(rhs2,e); // solve for the new e

// sensing goes here
snapshot(i,isnap,e,b); // dump all data if it is time
sample(i,e); // write selected fields to disk

}

EMSolve overloaded operators use
PETSc for automatic parallelization

EMSolve D. White 20

Example Python script

• The Python interpreter is run on each processor
• Can run interactively, modifying the equations during run-time. Like a

massively parallel Matlab with finite element capability

• for i in range(nstep)

• sm.set_all(0.0)

• rhs1.MatVecMult(G,sm)

• rhs1.MatVecMultPlusVec(Q1,b,rhs1)

• sm.MatVecMult(K,e)

• rhs1.MatVecMultPlusVec(D,sm,rhs1)

• lsQ.solve(rhs1,b)

• se.set_all(0.0);

• electricCurrent.set_time(i,i)

• electricCurrent.source(se)

• rhs2.MatVecMult(A,se)

• rhs2.MatVecMultPlusVec(R1,e,rhs2)

• sm.MatVecMult(D,b)

• rhs2.MatVecMultPlusVec(KT,sm,rhs2)

• lsR.solve(rhs2,e)

EMSolve Python objects have member
functions that use PETSc for automatic
parallelization

Python is extensible, we can easily add application
specific modules as required.

EMSolve D. White 21

Example four processor decomposition of
prototype DARHT cell

Mesh decomposition Matrix decomposition

*white-zero, black non-zero
*N = 92,000

Vector decomposition

EMSolve D. White 22

Transient simulation of idealized electron
beam in prototype DARHT cell

• Input parameters to EMSolve
– Electric field unknowns:

133645
– Magnetic field unknowns:

128608
– Time step: 1.0e-2 (normalized)
– Time steps: 8000

• Results
– Average iterations per solve: 20

(Jacobi CG)
– Total CPU time on 4 processor

DEC: 3.7 hours

Longitudinal gap voltage vs time

V(t)

EMSolve D. White 23

Snapshot of electric field
at time T=200 ∆t

EMSolve D. White 24

Transient simulation of eight coupled
induction cells: 2.4 million unknowns

EMSolve D. White 25

Prototype DARHT cell eigenmode calculation

• Input parameters to EMSolve-ARPACK
– N=92,000
– 20 eigenvalue-eigenvector pairs
– 40 Arnoldi vectors
– eigenvalue tolerance 1.0e-4
– solve tolerance of 1.0e-7

• Results
– 5 restarts
– 82 linear solves
– 7957 iterations per solve (Jacobi conjugate residual)
– 15 hours on 4 processor Tera node
– 3 hours on 32 processors of Blue

EMSolve D. White 26

Seleted eigenmodes

85.6 MHz 181.9 MHz

271.9 MHz 349.5 MHz

EMSolve D. White 27

Electric energy density Poynting vector

An interesting application: optical trapping

• A laser beam is focused towards a dielectric object such that the focus
spot is adjacent to the object. The forces on the object are such that the
object is pulled towards the focus spot

– D. White, “Numerical Modeling of Optical Gradient Traps using the
Vector Finite Element Method,” Journal of Computational Physics.

EMSolve D. White 28

Things to do...

• Higher order basis functions
– A big advantage of finite element methods over FD or FV schemes is that

it is possible to develop higher order methods for unstructured grids that
• are provably stable,
• are provably charge conserving and energy conserving,
• accurately model discontinuity of fields across interfaces

• Improve efficiency
– On hybrid grids (structured/unstructured) it is possible to use hybrid time

integration methods (explcit/implicit). Up to 30x speedup.
– Better preconditioners (SPAI, ILUT, multilevel, …). Up to 5x speedup.

• Physics modules
– Develop as required. Far fields, dispersive/nonlinear media, etc.

EMSolve D. White 29

Summary

• EMSolve is a research code used to investigate the utility of vector
finite elements. It is not ready for general release.

• The EMSolve finite element engine uses four different types of finite
element basis functions
– The user has freedom to choose which type of basis function to use for

each field, and what type of differential operators are needed.
• The EMSolve solver uses vectors & matrices as the basic abstractions

– In the solver, the user has freedom to apply standard algebraic operations
with vectors (discrete fields) and matrices (discrete operators)

– The algebraic operations are automatically parallel
• The EMSolve numerical method works (stable, conservative, etc.) on

unstructured grids, and reduces to standard FD on Cartesian grids.

